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Arnol’d’s second stability theorem is proved for arbitrary perturbations of the 
potential vorticity field 6q and the circulation(s) 6y. The formal stability condition is 
essentially the same as that for 6y = 0, which is much easier to obtain. Similarly, the 
condition obtained assuming = 0 (the overbar denoting a horizontal average) is 
found to be also valid for + 0. It is argued that a Lyapunov functional that is 
extreme only on the sheet of constant Casimirs (and other integrals of motion) also 
proves stability for perturbations off the sheet, even though its second variation may not 
be sign definite for general perturbations. This conjecture is illustrated by means of a 
very simple mechanical problem: a point particle subject to the action of a central 
force. For the case of Phillips’ problem in a periodic channel, formal stability 
conditions on the isovortical sheet coincide with the criteria obtained from normal 
modes analysis. 

1. Proof of the theorem 
In a recent paper (Ripa 1992, hereinafter denoted by R92) I worked out the 

Hamiltonian structure of the quasi-geostrophic multi-layer model, and derived 
Arnol’d’s first and second sufficient stability theorems for that system. The proof of 
Arnol’d‘s second theorem is incorrect (for reasons pointed out below) even though the 
end result is right: let me give a correct derivation here, as well as an improvement of 
the stability criteria presented in R92. 

Consider the 1;-layer model (a more complicated vertical structure is no major 
problem, as will be shown below) in a domain D with boundaries aD,. The state space 
variables are the potential vorticity q and the circulations yj ,  whose evolution is 
determined by 

where the streamfunction @ is uniquely determined by 

at9 = - a , $ q / q + a , ~ - a , q ’  y j  = 0, (1 a, b) 

p is the inverse of the deformation radius, and $, (.) denotes the path integral of (.) 
along aDj. The limit p + 0 is rather special, as is discussed below. 
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Let me define the following notation 

(3) 

for t+P and $b arbitrary functions in D, subject to n x W$ = 0 @ aD (e.g. the total 
energy is given by :[$, $1). From (2) and (3) it follows that 

[II.”, $bl = x $; Yi” - ( V ( 4 - f  I b > ,  (4) 

or similarly swapping a and b. Cj denotes a sum over the disconnected parts of the 
boundary, a l l f ,  and the subscript j means the value of the variable on aD,. (In all cases 
where that symbol is used, this value is independent of position along the contour, e.g. 
$ = $* on account of the last equation in (2).) 

Writing the dynamical fields as q = Q + 6q and y = r+ 67, where (Q, r )  represents 
some basic state, formal stability of the latter is assured by finding a conserved 
functional of state, whose lowest-order variation is sign definite. Making Y = 2 +%, 
where % is the Hamiltonian and % an appropriately chosen Casimir such that 
6 9  = 0, a sufficient condition for 6’9 > 0 (tj2Y < 0) constitutes Arnol’d’s first 
(second) formal stability theorem (McIntyre & Shepherd 1987; R92). Both r and 6y 
are time independent, in virtue of (1 b), but a value of 6y $. 0 represents a contribution 
to the velocity field in the interior which affects the time evolution of 6q(x,t). 
Consequently, a non-vanishing 6y represents in principle a non-trivial complication of 
the stability problem. 

f 

Consider the conserved Lyapunov functional 

Y[q ,  ?,I = :[$, $1 + <F(q)) + r( cj Yf, 
1 

(5) 

with F(q) and cj arbitrary. Its first variation from the basic state is 

6 9  = <(F(Q) - u) 6q)  + C ( ~ 5 -  Y’j) 
f 

in order for this to vanish for all perturbations (Fq,6y), it is necessary that Y = F(Q) 
and Y5 (= Y @ aDf) = c1 (this requires the basic state to be steady). The total variation 
of Y is then 

where 

If Y(Q) is positive (Amol’d’s first theorem) then formal stability is easily proved; 
nonlinear stability requires g/6q2 to be bounded between two positive numbers. 

The difficulty with the second theorem, !P < 0, lies in that [ti$, 6$] is a functional 
of both 6q and 6y. Let me attack this problem with a decomposition of 6$ in the form 

(7 a)  

(7 b) 

A 9  = (42, 6 q ) )  + 3$, W-I, 
v(Q, 6q) := ( A  - 6) F(q) = iY‘(Q) 6q2 +f!P”(Q) 6q3 + . . . . 

(6 a> 

(6 b) 

6$(x, 0 = 6$Q(x, 0 + 6 $ W ,  

A 9  = (a@, 6q)) + @,kq, a$*] + [6$*, 6$7] + #$y, 6$Y] .  

to be specified below, which makes 

In R92 I chose (7a) such that [6$q, 6$’] = 0; this requires 6$7 to be a linear function 
of 6yf-6q1, where 6f1 is ‘produced’ by 6q (see (3.8b) and (3.10) in that paper). 
However, the statement in R92 (p. 387) in the sense that [S@, 6$7] is time independent 
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is incorrect, since even though 6yj is constant, 6 f I  can be time dependent. To correct 
that error, consider instead the following definition of decomposition (7 a) 

(Vz -pz)  S$q = 6q, V6t,kq-n = 0, n x VF$q = 0 @ aD, (8 4 

It is very easy to prove uniqueness of this decomposition; existence will be shown for 
a particular example, the periodic channel, by means of constructing a suitable 
expansion basis. From (4) and (8) one finds 

and 
[6$@,6$Y] = -(6$'6q) = E6$;6$hj; (8 4 

For this decomposition, [6$Y,&$y] is time independent, so it does not represent a 

j 

notice that [S+@ + 6$y, S$@ + S$YI = - (S$ 6 q )  + XI Sllr, 6y,, as required by (4). 

problem for a stability theorem. Expression (7b) can be rearranged in the form 

X @ ~ ~ Y ~ - ~ $ ~ / ~ ~ ) ~ ~ ~ ~ $ ~ / P ~ ) ~ ~ [ ~ $ ~ ~ , ~ ~ * I - ~ ~ ( ~ ( Q ,  6q))  = (9) 
I 

for any pi =+ 0, where M := 2AY - [S$Y, - XI bj 6 ~ ~ ) ~  is time independent by 
construction. In order to prove nonlinear stability I assume that it is possible to make 
the bounds 

(10a> 
(&qZ G vj2(6q2), (10b) 

(104 
for some h2, v; and a pair of positive numbers a and A .  Using (9) and (10) it is possible 
to prove that 

M A ( 6 q 2 ) + C  @j6yj-6$Y/pj)' ( 1  1 4  

and w(6q2)+c@ISY*--$~/Pj)2 G M ,  ( 1  1 4  

F + q ,  6$?l G (A2 +lC2)r1 (6q2) ,  

(h2+,d)-' < a < - 2 4 Q ,  6q)/6q2 < A ,  

i 

i 

where W:= a- (A2 +pL2)-l - XI v;"/p;" is chosen positive (with p;" large enough). Using 
(1 1 a) at t = 0, it follows that the left-hand side of (1 1 b)  (whose square root qualifies 
as a norm II6q, 61,+ll) is bounded by A /  W times its initial value, i.e. the basic flow is 
nonlinearly stable. 

Of the three bounds in (lo), the last one is a condition on the structure of the basic 
state (it is, in fact, stability condition (3.13) from R92), whereas the first two represent 
a property of the domain D and equation (8u). Notice that the particular value of vi 
in ( lob )  does not appear in the stability condition (1Oc). This is not the case of 
parameter A2, from ( I O U ) ,  which does play an important role in the stability condition. 
If one imposes 67, E 0 to start with then ( lob)  is not needed at all. A sufficient 
condition for formal stability is obtained simply by replacing the bounds in (1Oc) by 

dY/dQ < - (A2 +p2)-l; (12) 
this is condition (3.12) in R92. 

I will show next how inequalities (10a) and ( lob )  can be proved, by the explicit 
evaluation of h2 and v; for the example of the periodic zonal channel. Even through a 
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value of v; < 00 was used here to prove normed stability for 67, 0, bound (lob) is 
not really needed to evaluate the stability range of a family of basic flows; this 
statement will be clarified with examples in the periodic channel. 

2. The zonal periodic channel 
Consider the domain [0, L,. 0 [0, L,], with periodic boundary conditions in x. The 

decomposition in (8) can be done by expanding the perturbation in a suitable basis. An 
appropriate one for 6+q is 

where k ,  := 2n7c/LX and 1,  := rnx/L,. A basis for the expansion of S$' is given by 

or any independent combinations of these two functions. (The basis used in the 
inappropriate decomposition proposed in R92 is given by (1 3 a) replacing cos (lm y )  by 
sin (1,y) in the n = 0 case.) 

$*(4 = exp ( kPY)7  U3b)  

Using basis (13a) to expand 6q yields 

84x7 '1 = 2 A m ( t )  X n m ( x )  3 6 $ ' ( ~ 7  t )  = - 2 K i k  A,m(t) ~ l z m ( ~ ) ,  (14) 
nm nm 

where K : ~  := k2, +I", +p2, from which it follows that 

<W) = $L, L, C A i m (  1 + 8no(1+ 26mO)) 

[6$-J, WQI = +L, L, c K,k A i m ( l +  tjn0(l + 26,,)). 

nm 

and 
nm 

Consequently, inequality (10 a) is satisfied, with 

h2 +,LA2 K t o  = ,U2. 

Moreover, at both boundaries one finds 

S$' = -x K;: A,, ( y  = 0),  S$' = - (- 1)" K;: A,, ( y  = L,), 
m m 

and since ( S q 2 )  2 L, L u x m  A:m, the bound (lob) is easily proved using Schwartz 
inequality, i.e. 

which yields 
( C m K 2 z A o m ) 2  X m G k C m A i m ,  

I have proved bounds ( loa )  and ( l o b )  for the periodic channel; consequently 
(10 c)/( 15 a) is a nonlinear stability condition. 

Notice that (15b) is not valid for ,u = 0. This case (barotropic with 'rigid lid') is 
special in the sense that the streamfunction is defined modulo addition of a constant 
and the potential vorticity and circulations are not independent, i.e. 

Y = O * < q - f ) = C Y * .  
i 
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In order to deal with the p = 0 case, I will derive next a new stability condition, valid 
for any p, which in fact is an improvement over condition (lOc)/(l5a). 

First of all, notice that (6q) is time independent (it is one of the Casimirs), hence the 
part of the streamfunction related to it can be moved from &hq(x, t )  to S$Y(x), i.e. (8) 
can be modified as 

(V2-p2)6$q = 6q-G, V6$q.n = 0, n x V6@q = 0 @aD, (8a)' k 
i VG$Y-n = 6yj, n x V6@y = 0 @ aD. (8b)' 

:= (6q ) / (  1> is the (constant) horizontal average of 6q. Equation (4) indicates 

(V"p2)6$Y = &, 

[6$Q,6$P] = c6@;6yj-(6$Q6q). 

i 
where 
that (8 c) should be replaced by 

1 

However ( 8 4 '  implies that (6q-F) = 0 = -,~?(6@~) and therefore if p2 =+ 0 it must 
be (6@q) = 0, whereas if p2 = 0 one may choose = 0 since in this case the 
streamfunction is defined modulo the addition of a constant. The end result is that (8c) 
does hold true. The analysis proceeds more or less as before7 and the same stability 
condition (1Oc) is obtained, the key difference being that 6$@ in (10a) and (lob) has 
now a vanishing horizontal average. 

from 6q(x, t )  to calculate 6@q 
(i.e. making ( &kq) = 0) corresponds to simply eliminating xoo from the basis (1 3 a)  and 
adding 8, := 1 to the basis (13b). Consequently, the bounds (lOa) and (lob) now 
correspond to 

P + p 2  = K i 1  = (.n/Lu)2+p2, (15a)' 

For the example of the periodic channel, subtracting 

rn I 

(15b)' 

which are better than (1 5 a) and (1 5 b) in the sense that the bounds (l0a) and (1 0 b) are 
more restrictive with the new values of h2 and 9. 

Moreover, (1 5 b)' does not diverge as p + 0. In this limit, one has only two functions 
for the expansion of 6 $ y ,  say 9 = y -:Lv, y2 -+L; instead of the three functions 
(exp(+,uy) and 1) used for p =+= 0. Loss of one expansion function is consistent with 
the constraint ( 6 q )  = xj 6yj valid for p = 0. 

Comparing stability conditions (10 c)/( 15 a)' and (10 c)/( I 5 a) there are two 
important points to make: First, (10c)/(15a)' is stronger than (1Oc)/(15a), because it 
corresponds to a larger class of proved stable states (recall that these criteria are 
sufficient for stability or necessary for instability). Secondly, if one assumes G = 0, 
which represents a peculiar class of perturbations, albeit preserved by the dynamics, 
condition (10c)/(15a)' is easily obtained, instead of (10c)/(l5a). However, the former 
is also valid for & =+ 0. 

3. Extension of the theorem 
In sum, I have shown how sign definiteness of a 2 ( 2  + %) on the sheet (6y, 6q) = 0, 

i.e. condition (12)/(15)', guarantees also formal stability on nearby sheets, in which 
(6y,6q) =+ 0. A simple geometrical interpretation is the following: the dynamics 

7 An expression of the form A Sq' + B(6q -G)2 has to be written as (A +B) (Sq- CG)" D.  
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FIGURE 1. Topology of the surfaces of constant pseudoenergy in state space. Conservation of the 
other integrals of motion requires the system to move in some 'horizontal' plane: even though the 
central point is not an absolute extremum, it is a stable point, because the intersections with 
horizontal planes all have an elliptic point. 

requires the motion to lie on some sheet (6y, G) = const, and - excluding pathological 
cases - if 6'(X + %) has an elliptical point on (6y,6q) = 0, it will be so on nearby 
sheets, i.e. (6y,6q) sufficiently small (see figure 1). Therefore the motion is formally 
stable even though 62(&'+%?) may not be sign definite for all perturbations. 

Of course, if pressed to define 'pathological' I will end up in a circular argument. Let 
me instead clarify this idea (which is not a proof) using a very simple example: the 
motion of a particle on the plane, subject to a central potential #(r); the azimuthal 
angle, which is a cyclic variable, is factored out from state space, thereby playing the 
role of the 'inner' symmetries of the Eulerian fluid problems. The system can be 
described by the Hamiltonian 

H(r, u, I) = +u2 + :I 'r-' + $(r) (164 
and Poisson brackets {r ,  u} = 1 ,  { r ,  I }  = {u, I }  = 0,  (16b) 

(7,O = 0 v 7(r, u, 0, 
such that 

and one of the coordinates. However, the latter property is not important in what 
follows: the power of Hamiltonian formalism lies in its manifest covariance under 
change of variables (more on this below). 

r(t) = R(t) + 6r(t), 

= (7, H}V y(r ,  u, 1).  The angular momentum 1 is here a Casimir, 

(17) 

(18) 

i Defining 
u(t) = U(t>+&u(t), 

1 = Li-61, 
and requiring 6(H-521) = 0, for some constant 52, yields the steady solution 

R = const, U = 0, L = R2Q, #'(R) = RQ2. 
In order to study the stability of this solution, one calculates the second differential of 
H-521, namely 

6'(H-O1) = 6u2+w26r2+R-26P-4452R-16r61 ( 1 9 4  
&'(H- 521) = 6u2 + (w2 - 4Q') 6 9  + (R-l61- 252 Sr)' (19b) 
g2(H- 521) = 6u2 + w2(6r - 2R-'u-' 61)2 - W - ~ ( ( W '  - 4Q2) R-' 61 ', ( 1 9 4  
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where I have used L = R 2 0  and defined 

wa := $"(R) + 352' = $:(R), (20) 

o2 > 402 (21) 

with #,(r) := $(r)+ L2/2r2. From (19a) it follows that if 

[i.e. f ( R )  > f ( R ) / R ]  then 62(H-52Z) is positive definite for arbitrary perturbations, 
and therefore the solution (18)  is stable. 

However, by solving explicitly the linearized equations for (6r,  6u, 61) it is found that 
o2 > 0 [i.e. $"(R) > -3$'(R)/R] is sufficient for stability; (19) shows this to be the 
condition for 6'(H-SZr) to be positive definite not for arbitrary perturbations, but for 
those on the sheet 61 = 0. Notice that (19c) implies that if w2 > 0 and 61 9 0, then 
tj2(H- 520 has an elliptical point at (u  = 0, r = R + 2 R - l ~ ~ '  60 ; that is why the solution 
(18) is stable. The figure shows the surfaces of H-521 in state space (the u and r axes 
are horizontal and the 1 axis is vertical) for a basic state such that 0 < wa < 40'. The 
cones correspond to 6'(H- Or) = 0, whereas in their interior (exterior) this integral of 
motion is negative (positive), as indicated by (19c). 

Of course, in this case it is possible to construct an integral of motion which has an 
absolute maximum at (18), even for 0 < w2 < 452'; this is given by H+F(l), where F(r) 
is arbitrary, save for F'(L) = -52 and F"(L) > w - ' ( ~ ~ - 4 5 2 ~ )  R-'. However, the point 
here is that it is enough to prove sign definiteness of 6'(H-521) on 61 = 0 to guarantee 
stability even for perturbations with 61 =t= 0. This is an analogy for the results of the last 
section, with 1 playing the role of y and/or q, and H - 0 1  being the analogue of the 
Lyapunov functional (5).  One could also replace the latter by 

with Fi(Tj) = cj and F;(T'') negative and large enough to make negative definite. 
However, as long as formal stability is concerned, it is enough to prove sign definiteness 
on a sheet of constant integrals of motion. 

It might be argued that this analogy is not a good one, because 1 is conserved and 
it is one of the coordinates. However, the same exercise can be easily done with the 
Hamiltonian 

(22 a> 
and the Poisson brackets 

{r, u> = 1, (r,  v }  = 0, {u, u }  = v / r .  (22 b) 

H(r, u, v )  := $2 + iv' + $(r) 

The second differential (19) can be written in terms of (6r,8u,Fv) but the reasoning 
would be less clear. In this representation 1 = UT is a Casimir but not one of the 
coordinates, i.e. 1 is the analogue to the Casimirs ( 4 4 ) )  + 2, c, yj  of the last section 
which, alas, are not state variables. 

4. Discussion 
Proving sign definiteness of one integral of motion on the sheet where all other 

integrals of motion are kept fixed is enough to guarantee formal stability to small 
perturbations of arbitrary shape, i.e. off the sheet. Consider again the 1;-layer quasi- 
geostrophic model on a periodic zonal channel. In order to prove the stability of a 
steady and parallel basic flow, 
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the most general Lyapunov functional is given by an arbitrary combination of 
pseudoenergy and pseudomomentum, i.e. X - 01 + d for any 01, where the Casimir %‘ 
is chosen so that 6(X -014 + 59) = 0. Formal stability is guaranteed if 6’(X -a& + U) 
is proved to be sign definite for perturbations such that (F’(Q)6q)  = OVF(q).  This 
constraint on the perturbation implies that the x-average of 6q must vanish V y .  That 
means that it is enough to prove sign definiteness of 62(X-aAf+%) for 6q given by 
the expansion (14) with n =k 0, i.e. instead of (15u) or (15a)’ one has 

(1 5 a)” 

which makes of (1Oc) or (12) a stronger stability condition, because the value of h2 is 
larger than those of (1 5 a)’ and (1 5 a). 

h2 +p2 K;l = (2TC/L,)2 + (n/LU)’ +p2, 

The extended Arnol’d’s second theorem then reads 

for all y and some a, which represents an improvement over equation (4.1 b) of R92, 
on account of the term (27~/L,)~. Take for instance 

U(Y) = u, sin (AY) - p/pz, 

A2 > (27C/LJ2 + (TC/L,)2, 

(2 5 )  

(26) 

the necessary condition for instability derived using a = -P/p2 in (24) is 

which is more restrictive (for a finite length channel) than equation (4.3) of R92. 
Criterion (26) coincides with the normal mode one; see (4.5) in R92. 

Finally, let me point out that a more complicated vertical structure does not 
represent a major problem for the stability theorems developed here. If a common 
bound is sought for dYj/dQ, in all layers, then a weak form of the stability condition 
is obtained, that is, either (1Oc) or (12) with p-l equal to the largest deformation radius 
in a vertical normal modes spectrum. For instance, we can rederive the stability 
condition for Phillips’ problem (treated in R92) which now reads 

f,2(H, + H,)/(g’H, H2) < (2+51J2 + (w$, 

2f,2/g’(H, 4); < (2.rC/LJ2 + (n/L&z 

(27) 
and is less demanding than condition (5.1) of that paper. Moreover, following the 
procedure in $5 of R92, the stronger condition 

(28) 
is now obtained, which guarantees that AX is negative definite on the 
(F(q) )  = constant and yi = constant sheet. This formal stability condition is stronger 
than condition (5.5) of R92 on account of the term (27~ /L , )~ .  Moreover, (28) coincides 
with the normal modes stability condition; see (5.9)p and following in R92. 

I want to express my gratitude to Dr Mu Mu, who saw the smoke in R92, and Dr 
Julio Sheinbaum, who patiently revised different versions of this paper. This work was 
supported by CONACyT (MCxico) by means of grant 1282-T9204. 

Note added in proofi Mu Mu & T. G. Shepherd have submitted a paper to Geophys. 
Astrophys. Fluid Dyn. with a similar theorem. Their derivation corresponds to 
subtracting the contribution of & to 6Yq, i.e. to (15a)’ in the case of the periodic 
channel. 

t That equation should read 6 = I C ~  K ~ ( K ~  K ~ -  1).  
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